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Abstract
Multiple scattering formulations have been employed for more than 30 years
as a method of studying the quantum vacuum or Casimir interactions between
distinct bodies. Here we review the method in the simple context of δ-function
potentials, so-called semitransparent bodies. (In the limit of strong coupling,
a semitransparent boundary becomes a Dirichlet one.) After applying the
method to rederive the Casimir force between two semitransparent plates and
the Casimir self-stress on a semitransparent sphere, we obtain expressions for
the Casimir energies between disjoint parallel semitransparent cylinders and
between disjoint semitransparent spheres. Simplifications occur for weak and
strong coupling. In particular, after performing a power series expansion in
the ratio of the radii of the objects to the separations between their centers,
we are able to sum the weak-coupling expansions exactly to obtain explicit
closed forms for the Casimir interaction energy. The same can be done for
the interaction of a weak-coupling sphere or cylinder with a Dirichlet plane.
We show that the proximity force approximation (PFA), which becomes the
proximity force theorem when the objects are nearly touching each other, is
very poor for finite separations.

PACS numbers: 03.70.+k, 03.65.Nk, 11.80.Et, 11.80.La

1. Introduction

Recently, there has been a flurry of papers concerning ‘exact’ methods of calculating Casimir
energies or forces between arbitrary distinct bodies. A most notable one is the recent paper
by Emig, Graham, Jaffe, and Kardar [1]. (Details, applied to a scalar field, are supplied in [2],
see also [3, 4].) Precursors include an early paper of Renne [5], rederiving Lifshitz’ formula
[6] in this way, the famous papers of Balian and Duplantier [7–9], work of Kenneth and
Klich [10] based on the Lippmann-Schwinger formulation of scattering theory [11], papers
by Bulgac, Marierski, and Wirzba [12–14] who use the modified Krein formula [15], and
1 http://www.nhn.ou.edu/%7Emilton.
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by Bordag [16, 17] who derives his results from a path integral formulation. Dalvit et al
[18, 19] use the argument principle to calculate the interaction between conducting cylinders
with parallel axes. See also Reynaud et al [20] and references therein.

In fact, Emig and earlier collaborators [21–23] have published a series of papers, using
closely related methods to calculate numerically forces between distinct bodies, starting from
periodically deformed ones. Strong deviation from the proximity force approximation (PFA)
is seen, when the distance between the bodies is large compared to their radii of curvature.
Bordag [16, 24] has precisely quantified the first correction to the PFA both for a cylinder and
a sphere near a plane. As Gies and Klingmüller note [25], 1% deviation from the PFA occurs
when the ratio of the distance between the cylinder and plate to the radius of the cylinder
exceeds 0.01. We will not discuss the worldline method of Gies and collaborators [26–28]
further, as that method lies rather outside our discussion here. Similar remarks apply for
the work of Capasso et al [29], who calculate forces from stress tensors using the familiar
construction of the stress tensor in terms of Green’s dyadics [30, 31]. They use a numerical
finite-difference engineering method.

It is clear, then, with the exception of the last two methods, that these approaches are
fundamentally equivalent. We refer to all of the former methods as multiple scattering
techniques. We now proceed to state the formulation in a simple, straightforward manner
and apply it to various situations, all characterized by δ-function potentials. (A preliminary
version of some of our results has already appeared in [32].)

2. Formalism

We begin by noting that the multiple-scattering formalism may be derived from the general
formula for Casimir energies (for simplicity here we restrict our attention to a massless scalar
field) [33]

E = i

2τ
Tr ln G, (2.1)

where τ is the ‘infinite’ time that the configuration exists, and G is the Green’s function in the
presence of a potential V satisfying (matrix notation)

(−∂2 + V )G = 1, (2.2)

subject to some boundary conditions at infinity. (For example, we can use causal or Feynman
boundary conditions, or alternatively, retarded Green’s functions.) In appendix A we give a
heuristic derivation of this fundamental formula.

The above formula for the Casimir energy is defined up to an infinite constant, which can
be compensated at least partially by inserting a factor as Kenneth and Klich [10] do:

E = i

2τ
Tr ln GG−1

0 . (2.3)

Here G0 satisfies, with the same boundary conditions as G, the free equation

−∂2G0 = 1. (2.4)

Now we define the T-matrix (note that our definition of T differs by a factor of 2 from that
in [1])

T = S − 1 = V (1 + G0V )−1. (2.5)

We then follow standard scattering theory [11], as reviewed by Kenneth and Klich in [10].
(Note that there seem to be some sign and ordering errors in that reference.) The Green’s
function can be written alternatively as

G = G0 − G0T G0 = 1

1 + G0V
G0 = V −1T G0, (2.6)

2
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which results in two formulae for the Casimir energy

E = i

2τ
Tr ln

1

1 + G0V
(2.7a)

= i

2τ
Tr ln V −1T . (2.7b)

If the potential has two disjoint parts,

V = V1 + V2, (2.8)

it is easy to show that

T = (V1 + V2)(1 − G0T1)(1 − G0T1G0T2)
−1(1 − G0T2), (2.9)

where

Ti = Vi(1 + G0Vi)
−1, i = 1, 2. (2.10)

Thus, we can write the general expression for the interaction between the two bodies
(potentials) in two alternative forms:

E12 = − i

2τ
Tr ln(1 − G0T1G0T2) (2.11a)

= − i

2τ
Tr ln(1 − V1G1V2G2), (2.11b)

where

Gi = (1 + G0Vi)
−1G0, i = 1, 2. (2.12)

The first form is exactly that given by Emig et al in [1], and by Kenneth and Klich in [10],
while the latter is actually easy to use if we know the individual Green’s functions. (The effort
involved in calculation using either of the two is same.) In fact, the general form (2.11a)
was recognized earlier and was applied to planar geometries by Maia Neto, Lambrecht, and
Reynaud in [20, 34, 35]. In fact, Renne [5] essentially used equation (2.11b) to derive the
Lifshitz formula in 1971.

3. Casimir interaction between δ-plates

We now use the above-mentioned second formula (2.11b) to calculate the Casimir energy
between two parallel semitransparent plates, with potential

V = λ1δ(z − z1) + λ2δ(z − z2), (3.1)

where the dimension of λi is L−1. The free reduced Green’s function is (where we have
performed the evident Fourier transforms in time and the transverse directions)

g0(z, z
′) = 1

2κ
e−κ|z−z′ |, κ2 = ζ 2 + k2. (3.2)

Here k = k⊥ is the transverse momentum, and ζ = −iω is the Euclidean frequency. The
Green’s function associated with a single δ-function potential is

gi(z, z
′) = 1

2κ

(
e−κ|z−z′ | − λi

λi + 2κ
e−κ|z−zi | e−κ|z′−zi |

)
. (3.3)

Then the energy per unit area is

E = 1

16π3

∫
dζ

∫
d2k

∫
dz ln(1 − A)(z, z), (3.4)

3
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where, in virtue of the δ-function potentials (a = |z2 − z1|)

A(z, z′) = λ1λ2

4κ2
δ(z − z1)

(
1 − λ1

λ1 + 2κ

)
e−κ|z1−z2|

(
1 − λ2

λ2 + 2κ

)
e−κ|z′−z2|

= λ1

λ1 + 2κ

λ2

λ2 + 2κ
e−κa e−κ|z′−z2|δ(z − z1). (3.5)

We expand the logarithm according to

ln(1 − A) = −
∞∑

s=1

As

s
. (3.6)

For example, the leading term is easily seen to be

E (2) = − λ1λ2

16π3

∫
dζ d2k

4κ2
e−2κa = − λ1λ2

32π2a
, (3.7)

which uses the transforms in polar coordinates,

dζ d2k = dκ κ2 d	. (3.8)

In general, it is easy to check that, because A(z, z′) factorizes here, A(z, z′) = B(z)C(z′),
Tr An = (Tr A)n, or

Tr ln(1 − A) = ln(1 − Tr A), (3.9)

so the Casimir interaction between the two semitransparent plates is

E = 1

4π2

∫ ∞

0
dκ κ2 ln

(
1 − λ1

λ1 + 2κ
e−κa λ2

λ2 + 2κ
e−κa

)
, (3.10)

which is exactly the well-known result, for example given in [36].

4. Casimir self-energy for a single semitransparent sphere

Before we embark on new calculations, let us also confirm the known result for the self-stress
on a single sphere of radius a using this formalism. (This demonstrates, as did the rederivation
of the Boyer result [37] by Balian and Duplantier in [8], that the multiple scattering method
is equally applicable for the calculation of self-energies.) We start from the general formula
(2.7a), where

V (r, r′) = λδ(r − a)δ(r − r′). (4.1)

We use the Fourier representation for the propagator in Euclidean space,

G0(r, r′) = e−|ζ ||r−r′|

4π |r − r′| =
∫

d3k

(2π)3

eik·(r−r′)

k2 + ζ 2
, (4.2)

as well as the partial wave expansion of the plane wave

eik·r =
∑
lm

4π iljl(kr)Ylm(r̂)Y ∗
lm(k̂). (4.3)

Then, from the orthonormality of the spherical harmonics,∫
dk̂ Y ∗

lm(k̂)Yl′m′(k̂) = δll′δmm′ , (4.4)

we obtain the representation

G0(r, r′) = 2

π

∑
lm

∫ ∞

0

dk k2

k2 + ζ 2
jl(kr)jl(kr ′)Ylm(r̂)Y ∗

lm(r̂′). (4.5)

4
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Now we combine the representation of the free Green’s function with the spherical
potential (4.1) to obtain

(G0V )(r, r′) = 2λ

π
δ(r ′ − a)

∑
lm

∫ ∞

0

dk k2

k2 + ζ 2
jl(ka)jl(kr)Ylm(r̂)Y ∗

lm(r̂′). (4.6)

When this, or powers of this, is traced (that is, r and r′ are set equal, and integrated over), we
obtain a poorly defined expression; to regulate this, we assume r �= a, for example, r < a.
(This is a type of point-split regulation.) Then, because

jl(ka) = 1
2

(
h

(1)
l (ka) + h

(2)
l (ka)

) = 1
2

(
h

(1)
l (ka) + (−1)lh

(1)
l (−ka)

)
, (4.7)

while jl(kr) = (−1)ljl(−kr), we see that the k integration in equation (4.6) can be evaluated
as2 ∫ ∞

0

dk k2

k2 + ζ 2
jl(ka)jl(kr) = π

a
Kl+1/2(|ζ |a)Il+1/2(|ζ |r), r < a. (4.8)

Thus, it is easily seen that an arbitrary power of G0V has trace

Tr(G0V )n = (λa)n
∑
lm

(Kl+1/2(|ζ |a)Il+1/2(|ζ |a))n, (4.9)

and therefore the total self-energy of the semitransparent sphere is given by the well-known
expression [38, 39]

E = 1

2πa

∞∑
l=0

(2l + 1)

∫ ∞

0
dx ln

(
1 + λaIl+1/2(x)Kl+1/2(x)

)
, x = |ζ |a. (4.10)

Actually, a slightly different form involving integration by parts was given in [40, 41], which
results in the energy being finite through order λ2. In order λ3 there is a divergence which is
associated with surface energy [42].

5. 2 + 1 spatial geometries

We now proceed to apply this method to the interaction between bodies, which leads, as Emig
et al point out in [1, 2], to a multipole expansion. In this section we illustrate this idea with a
2 + 1 dimensional version, which allows us to describe, for example, cylinders with parallel
axes. We seek an expansion of the free Green’s function for R = R⊥ entirely in the x–y plane,

G0(R + r′ − r) = ei|ω||r−R−r′ |

4π |r − R − r′| =
∫

dkz

2π
eikz(z−z′)g0(r⊥ − R⊥ − r′

⊥), (5.1)

where the reduced Green’s function is

g0(r⊥ − R⊥ − r′
⊥) =

∫
(d2k⊥)

(2π)2

e−ik⊥·R⊥ eik⊥·(r⊥−r′
⊥)

k2
⊥ + k2

z + ζ 2
. (5.2)

As long as the two potentials do not overlap, so that we have r⊥ − R⊥ − r′
⊥ �= 0, we can write

an expansion in terms of modified Bessel functions:

g0(r⊥ − R⊥ − r′
⊥) =

∑
m,m′

Im(κr) eimφIm′(κr ′)e−im′φ′
g̃0

m,m′(κR), κ2 = k2
z + ζ 2. (5.3)

2 Of course, this result is the immediate consequence of the usual partial wave expansion

G0(r, r′) = ik
∑
lm

jl(kr<)h
(1)
l (kr>)Ylm(r̂)Y ∗

lm(r̂′), k = |ω|.

The point of our slightly more elaborate approach here is that it generalizes to the corresponding two-body case, see
equation (5.7).

5
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By performing a Fourier transform, and using the definition of the Bessel function

imJm(kr) =
∫ 2π

0

dφ

2π
e−imφ eikr cos φ, (5.4)

we easily find

g̃0
m,m′(κR) = 1

2π

∫ ∞

0

dk k

k2 + κ2
Jm−m′(kR)

Jm(kr)Jm′(kr ′)
Im(κr)Im′(κr ′)

, (5.5)

which is in fact independent of r, r ′.
As in the previous section, the k integral here can actually be evaluated as a contour

integral, as Bordag noted in [16]. No point-splitting is required here, because the bodies
are non-overlapping, so r/R, r ′/R < 1. We write the dominant Bessel function in terms of
Hankel functions,

Jm−m′(x) = 1
2

[
H

(1)
m−m′(x) + H

(2)
m−m′(x)

] = 1
2

[
H

(1)
m−m′(x) + (−1)m−m′+1H

(1)
m−m′(−x)

]
, (5.6)

and then we can carry out the integral over k by closing the contour in the upper half plane.
We are left with∫ ∞

0

dx x

x2 + y2
Jm−m′(x)Jm(xr/R)Jm′(xr ′/R) = (−1)m

′
Km−m′(y)Im(yr/R)Im′(yr ′/R), (5.7)

and therefore the reduced Green’s function has the simple form

g̃0
m,m′(κR) = (−1)m

′

2π
Km−m′(κR). (5.8)

Thus we can derive an expression for the interaction energy per unit length between the
two bodies, in terms of discrete matrices,

E ≡ Eint

L
= 1

8π2

∫
dζ dkz ln det(1 − g̃0t1g̃

0�t2), (5.9)

where � denotes transpose, and where the T matrix elements are given by

tmm′ =
∫

dr r dφ

∫
dr ′ r ′ dφ′ Im(κr) e−imφIm′(κr ′) eim′φ′

T (r, φ; r ′, φ′). (5.10)

5.1. Interaction between semitransparent cylinders

Consider, as an example, two parallel semitransparent cylinders, of radii a and b, respectively,
lying outside each other and described by the potentials

V1 = λ1δ(r − a), V2 = λ2δ(r
′ − b), (5.11)

with the separation between the centers R satisfying R > a + b. It is easy to work out the
scattering matrix in this situation,

T1 = V1 − V1G0V1 + V1G0V1G0V1 − · · · , (5.12)

so the matrix element is easily seen to be

(t1)mm′ = 2πλ1aδmm′
I 2
m(κa)

1 + λ1aIm(κa)Km(κa)
. (5.13)

Again, we used here the regularized integral3∫ ∞

0

dk k

k2 + κ2
Jm(kr)Jm(kr ′) = Km(κr ′)Im(κr), r < r ′. (5.14)

3 Again, this is equivalent to the use of the two-dimensional Green’s function

H0(kP ) =
∞∑

m=−∞
im e−imφ′

Jm(kρ′) eimφH(1)
m (kρ), ρ′ < ρ,

where P =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ − φ′).

6
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Thus the Casimir energy per unit length is

E = 1

4π

∫ ∞

0
dκ κ tr ln(1 − A), (5.15)

where

A = B(a)B(b), (5.16)

in terms of the matrices

Bmm′(a) = Km+m′(κR)
λ1aI 2

m′(κa)

1 + λ1aIm′(κa)Km′(κa)
. (5.17)

5.2. Interaction between cylinder and plane

As a check, let us rederive the result derived by Bordag in [16] for a cylinder in front of a
Dirichlet plane perpendicular to the x-axis. We start from the interaction (2.11a) written in
terms of Ḡ2, the deviation from the free Green’s function induced by a single potential,

Ḡ2 = G2 − G0 = −G0T2G0, (5.18)

so the interaction energy has the form

E = − i

2τ
Tr ln(1 + T1Ḡ2). (5.19)

When the second body is a Dirichlet plane, Ḡ may be found by the method of images, with
the origin taken at the center of the cylinder,

Ḡ(r, r′) = −G0(r, r̄′), r̄′ = (R − x ′, y ′, z′), (5.20)

where R is the distance between the center of the cylinder and its image at R⊥, that is, R/2
is the distance between the center of the cylinder and the plane. (We keep R here, rather than
R/2 = D, because of the close connection to the two cylinder case.) Now we encounter the
two-dimensional Green’s function

g(r⊥ + r′
⊥ − R⊥) =

∑
mm′

Im(κr)Im′(κr ′) eimφ eim′φ′
gmm′(κR), (5.21)

(because the cylinder has y → −y reflection symmetry) where the argument given above
yields

gmm′(κR) = 1

2π
Km+m′(κR). (5.22)

Thus the interaction between the semitransparent cylinder and a Dirichlet plane is

E = 1

4π

∫ ∞

0
κ dκ tr ln(1 − B(a)), (5.23)

where B(a) is given by equation (5.17). In the strong-coupling limit this result agrees with
that given by Bordag, because

tr Bs = tr B̃s, B̃mm′ = 1

Km(κa)
Km+m′(κR)Im′(κa). (5.24)

7
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5.3. Weak-coupling

In weak coupling, the formula (5.15) for the interaction energy between two cylinders is

E = −λ1λ2ab

4πR2

∞∑
m,m′=−∞

∫ ∞

0
dx xK2

m+m′(x)I 2
m(xa/R)I 2

m′(xb/R). (5.25)

Similarly, the energy of interaction between a weakly-coupled cylinder and a Dirichlet plane
is from equation (5.23)

E = − λa

4πR2

∞∑
m=−∞

∫ ∞

0
dx xK2m(x)I 2

m(xa/R). (5.26)

5.4. Power series expansion

It is straightforward to develop a power series expansion for the interaction between weakly-
coupled semitransparent cylinders. One merely exploits the small argument expansion for the
modified Bessel functions Im(xa/R) and Im′(xb/R):

I 2
m(x) =

(
x

2

)2|m| ∞∑
n=0

Z|m|,n

(
x

2

)2n

, (5.27)

where the coefficients Zm,n are

Zm,n =
n∑

k=0

1

k!(n − k)!�(k + m + 1)�(n − k + m + 1)

= 22(m+n)�
(
m + n + 1

2

)
√

πn!(2m + n)!�(m + n + 1)
. (5.28)

The Casimir energy per unit length (5.25) is now given as

E = −λ1aλ2b

4πR2

∫ ∞

0
dx x

∞∑
m=−∞

∞∑
m′=−∞

∞∑
n=0

∞∑
n′=0

(
xa

2R

)2|m|

×Z|m|,n

(
xa

2R

)2n(
xb

2R

)2|m′|
Z|m′|,n′

(
xb

2R

)2n′

K2
m+m′(x). (5.29)

Reordering terms gives a more compact formula

E = −λ1aλ2b

4πR2

∞∑
m=−∞

∞∑
m′=−∞

∞∑
n=0

∞∑
n′=0

Z|m|,n

(
a

R

)2(|m|+n)

×Z|m′|,n′

(
b

R

)2(|m′|+n′)

J|m|+|m′|+n+n′,m+m′ , (5.30)

where the two index symbol Jp,q represents the integral over x, which evaluates to

Jp,q = 2
∫ ∞

0
dx

(
x

2

)2p+1

K2
q (x) =

√
πp!�(p + q + 1)�(p − q + 1)

22p+2�
(
p + 3

2

) . (5.31)

In order to simplify the power series expansion in terms of a
R

and b
R

we need to reorder
the m-sums so that only non-negative values of m appear. There are several ways to break

8
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up the m sums; one of them is to decompose the sum into the m = m′ = 0 term, the m,m′

same-sign terms, and the m,m′ different-sign terms, giving

E = −λ1aλ2b

4πR2

[ ∞∑
n=0

∞∑
n′=0

Z0,n

(
a

R

)2n

Z0,n′

(
b

R

)2n′

Jn+n′,0

+ 2
∞∑

m=1

∞∑
m′=0

∞∑
n=0

∞∑
n′=0

Zm,n

(
a

R

)2(m+n)

Zm′,n′

(
b

R

)2(m′+n′)

Jm+m′+n+n′,m+m′

+ 2
∞∑

m=0

∞∑
m′=1

∞∑
n=0

∞∑
n′=0

Zm,n

(
a

R

)2(m+n)

Zm′,n′

(
b

R

)2(m′+n′)

Jm+m′+n+n′,m−m′

]
. (5.32)

It is now possible to combine the multiple infinite power series into a single infinite power
series, where each term is given by (possible multiple) finite sum(s). In this case we get an
amazingly simple result

E = −λ1aλ2b

4πR2

1

2

∞∑
n=0

(
a

R

)2n

Pn(µ), (5.33)

where µ = b/a, and where by inspection we identify the binomial coefficients

Pn(µ) =
n∑

k=0

(
n

k

)2

µ2k. (5.34)

Remarkably, it is possible to perform the sums [43], so we obtain the following closed form
for the interaction between two weakly-coupled cylinders:

E = −λ1aλ2b

8πR2

[(
1 −

(
a + b

R

)2
)(

1 −
(

a − b

R

)2
)]−1/2

. (5.35)

We note that in the limit R − a − b = d → 0, d being the distance between the closest points
on the two cylinders, we recover the proximity force theorem in this case (B.4),

U(d) = −λ1λ2

32π

√
2ab

R

1

d1/2
, d 
 a, b. (5.36)

In figures 1–2 we compare the exact energy (5.35) with the proximity force approximation
(5.36). Evidently, the former approaches latter when the sum of the radii a +b of the cylinders
approaches the distance R between their centers. The rate of approach is linear (with slope
3/2) for the case of equal radii, but with slope b2/4a2 when a 
 b. More precisely, the ratio
of the exact energy to the PFA is

E

U
≈ 1 − 1 + µ + µ2

4µ

d

R
≈ 1 − R2 − aR + a2

4a(R − a)

d

R
. (5.37)

This correction to the PFA is derived by another method in appendix C. The reader should
note that the PFA is actually only defined in the limit d → 0, so the functional form away
from that point is ambiguous. Corrections to the PFA depend upon the specific form assumed
for U(d).
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Figure 1. Plotted is the ratio of the exact interaction energy (5.35) of two weakly-coupled cylinders
to the proximity force approximation (5.36) as a function of the cylinder radius a for a = b.
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Figure 2. Plotted is the ratio of the exact interaction energy (5.35) of two weakly-coupled cylinders
to the proximity force approximation (5.36) as a function of the cylinder radius a for b/a = 99.

5.5. Exact result for interaction between plane and cylinder

In exactly the same way, starting from equation (5.26), we can obtain a closed-form result for
the interaction energy between a Dirichlet plane and a weakly-coupled cylinder of radius a
separated by a distance R/2. The result is again quite simple:

E = − λa

4πR2

[
1 −

(
2a

R

)2
]−3/2

. (5.38)

In the limit as d → 0, this agrees with the PFA:

U(d) = − λ

64π

√
2a

d3/2
. (5.39)

Note again that this form is ambiguous: the proximity force theorem is equally well satisfied
if we replace a by R/2, for example, in U(d). The comparison between this PFA and the
exact result (5.38) is given in figure 3. The FPA given here corresponds to that of Bordag [17]
in the limit of weak coupling for the cylinder and strong coupling for the plane.
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Figure 3. Plotted is the ratio of the exact interaction energy (5.38) of a weakly-coupled cylinder
above a Dirichlet plane to the proximity force approximation (5.39) as a function of the cylinder
radius a.

5.6. Strong coupling (Dirichlet) limit

The interaction between Dirichlet cylinders is given by equation (5.15) in the limit λ1 = λ2 →
∞, that is

E = 1

4πR2

∫ ∞

0
dx x tr ln(1 − A), (5.40a)

where

Amm′ =
∑
m′′

Km+m′′(x)Km′′+m′(x)
Im′′(xa/R)

Km′′(xa/R)

Im′(xb/R)

Km′(xb/R)
. (5.40b)

Here the trace of the logarithm can be interpreted as in equation (3.6).
Because it no longer appears possible to obtain a closed-form solution, we want to verify

analytically that as the surfaces of the two cylinders nearly touch each other, we recover the
result of the proximity force theorem. We use a variation of the scheme explained by Bordag
for a cylinder next to a plane in [16]. (The analysis is a bit simpler in the weak-coupling
case, which leads to equation (5.36), see appendix C.) First we replace the products of Bessel
functions in A by their leading uniform asymptotic approximants for all m’s large:

Bmm′′(a)Bm′′m′(b) ∼ 1

2π

1√
m + m′′

1√
m′ + m′′

×
(

1 +

(
x

m + m′′

)2
)−1/4 (

1 +

(
x

m′ + m′′

)2
)−1/4

e−χ , (5.41)

where the exponent is

χ = (m + m′′)η
(

x

m + m′′

)
+ (m′ + m′′)η

(
x

m′ + m′′

)
− 2m′′η

(
xa

m′′R

)
− 2m′η

(
xb

m′R

)
,

(5.42)

in terms of

η(z) = t−1 + ln
z

1 + t−1
, η′(z) = 1

zt
, η′′(z) = − t

z2
, (5.43)

and

t = (1 + z2)−1/2. (5.44)

11
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We write the trace of the sth power of A as (summed on repeated indices)

(As)m1m1 = Bm1m
′
1
(a)Bm′

1m2(b)Bm2m
′
2
(a)Bm′

2m3(b) · · · Bmsm′
s
(a)Bm′

sm1(b). (5.45)

We rescale variables in terms of a large variable M and relatively small variables:

m′
i = Mαi, mi = Mβi, (5.46)

where without loss of generality we take only 2s − 1 of the α’s and β’s as independent:
s∑

i=1

(αi + βi) = s. (5.47)

This normalization is chosen so that at the critical point where χ = 0 for a + b = R,

αi = a

R
βi = 1 − a

R
, ∀i. (5.48)

Away from this point, we consider fluctuations,

αi = a

R
+ α̂i , βi = 1 − a

R
+ β̂i , (5.49)

with the constraint
s∑

i=1

(α̂i + β̂i) = 0. (5.50)

The Jacobian of this transformation is sM2s−1.
Now, we expand the exponent in tr As , to first order in d = R − a − b, and to second

order in α̂i , β̂i . The result is

χ = 2Msd

tR
+ Mt

(
R

a
− 1

) s∑
i=1

[
α̂i − 1

2

a

R − a
(β̂i + β̂i+1)

]2

+
Mt

4

a

R − a

s∑
i=1

(β̂i − β̂i+1)
2.

(5.51)

The α̂i terms lead to trivial Gaussian integrals. The difficulty with the quadratic β̂i terms is
that only s − 1 of the differences are independent. But, in view of the constraint (5.50) there
are only s − 1 independent βi variables. In fact, it is easy to check that

s∑
i=1

(β̂i − β̂i+1)
2 =

s−1∑
i=1

i + 1

i

⎡
⎣β̂i − β̂i+1 +

1

i + 1

s−1∑
j=i+1

(β̂j − β̂j+1)

⎤
⎦

2

, (5.52)

which now enables us to perform each successive β̂i − β̂i+1 integration. The Jacobian of the
transformation to the difference variables ui = β̂i − β̂i+1, i = 1, . . . , s − 1, is 1/s. Thus, we
can immediately write down

E ∼ − 1

4πR2

∫ ∞

0
dz z

∞∑
s=1

t s

s

∫ ∞

0
dM

M2s+1

(2πM)s
e−2Msd/tR

×
[∫ ∞

−∞
dαi e−Mt(R−a)α2

i /a

]s s−1∏
i=i

∫ ∞

−∞
dui e−Mat

∑s−1
i=1

i+1
i

u2
i /4(R−a)

= − 1

4πR2

∫ ∞

0
dz z

∞∑
s=1

1

s

∫ ∞

0
dM M2s+1 t s

(2πM)s
e−2Msd/tR

×
[

πa

(R − a)Mt

]s/2 [
4π(R − a)

Mta

](s−1)/2

s−1/2

= −
√

2a(R − a)π3

3840R3

(
R

d

)5/2

, (5.53)
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which is exactly the result expected from the proximity force theorem, according to
equation (B.5).

We will forego further discussion of strong coupling, and presentation of numerical results,
for these have been extensively discussed in several recent papers, especially in [2].

6. Three-dimensional formalism

The three-dimensional formalism is very similar. In this case, the free Green’s function has
the representation

G0(R + r′ − r) =
∑

lm,l′m′
jl(i|ζ |r)jl′(i|ζ |r ′)Y ∗

lm(r̂)Yl′m′(r̂′)glm,l′m′(R). (6.1)

The reduced Green’s function can be written in the form

g0
lm,l′m′(R) = (4π)2il

′−l

∫
(dk)

(2π)3

eik·R

k2 + ζ 2

jl(kr)jl′(kr ′)
jl(i|ζ |r)jl′(i|ζ |r ′)

Ylm(k̂)Y ∗
l′m′(k̂). (6.2)

Now we use the plane-wave expansion (4.3) once again, this time for eik·R, so now we
encounter something new, an integral over three spherical harmonics,∫

dk̂ Ylm(k̂)Y ∗
l′m′(k̂)Y ∗

l′′m′′(k̂) = Clm,l′m′,l′′m′′ , (6.3)

where

Clm,l′m′,l′′m′′ = (−1)m
′+m′′

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

(
l l′ l′′

0 0 0

) (
l l′ l′′

m m′ m′′

)
. (6.4)

The three-j symbols (Wigner coefficients) here vanish unless l + l′ + l′′ is even. This fact is
crucial, since because of it we can follow the previous method of writing jl′′(kR) in terms of
Hankel functions of the first and second kind, using the reflection property of the latter,

h
(2)
l′′ (kR) = (−1)l

′′
h

(1)
l′′ (−kR), (6.5)

and then extending the k integral over the entire real axis to a contour integral closed in
the upper half plane. The residue theorem then supplies the result for the reduced Green’s
function4

g0
lm,l′m′(R) = 4π il

′−l

√
2|ζ |
πR

∑
l′′m′′

Clm,l′m′,l′′m′′Kl′′+1/2(|ζ |R)Yl′′m′′(R̂). (6.6)

6.1. Casimir interaction between semitransparent spheres

For the case of two semitransparent spheres that are totally outside each other,

V1(r) = λ1δ(r − a), V2(r
′) = λ2δ(r

′ − b), (6.7)

in terms of spherical coordinates centered on each sphere, it is again very easy to calculate the
scattering matrices,

T1(r, r′) = λ1

a2
δ(r − a)δ(r ′ − a)

∑
lm

Ylm(r̂)Y ∗
lm(r̂′)

1 + λ1aKl+1/2(|ζ |a)Il+1/2(|ζ |a)
, (6.8)

4 This differs by a (conventional) factor of |ζ | from the quantity Ulml′m′ defined by Emig et al [2].
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and then the harmonic transform is very similar to that seen in equation (5.13), (k = i|ζ |)
(t1)lm,l′m′ =

∫
(dr)(dr′)jl(kr)Y ∗

lm(r̂)jl′(kr ′)Yl′m′(r̂′)T1(r, r′)

= δll′δmm′(−1)l
λ1aπ

2|ζ |
I 2
l+1/2(|ζ |a)

1 + λ1aKl+1/2(|ζ |a)Il+1/2(|ζ |a)
. (6.9)

Let us suppose that the two spheres lie along the z-axis, that is, R = Rẑ. Then we can
simplify the expression for the energy somewhat by using Ylm(θ = 0) = δm0

√
(2l + 1)/4π .

The formula for the energy of interaction becomes

E = 1

2π

∫ ∞

0
dζ tr ln(1 − A), (6.10)

where the matrix

Alm,l′m′ = δm,m′
∑
l′′

Bll′′m(a)Bl′′l′m(b) (6.11)

is given in terms of the quantities

Bll′m(a) =
√

π√
2ζR

i−l+l′
√

(2l + 1)(2l′ + 1)
∑
l′′

(2l′′ + 1)

×
(

l l′ l′′

0 0 0

)(
l l′ l′′

m −m 0

)
Kl′′+1/2(ζR)λ1aI 2

l′+1/2(ζa)

1 + λ1aIl′+1/2(ζa)Kl′+1/2(ζa)
. (6.12)

Note that the phase always cancels in the trace in equation (6.10). For strong coupling, this
result reduces to that found by Bulgac, Wirzba et al in [12, 14] for Dirichlet spheres, and
recently generalized by Emig et al in [2] for Robin boundary conditions; see also [44].

6.2. Weak coupling

For weak coupling, a major simplification results because of the orthogonality property,
l∑

m=−l

(
l l′ l′′

m −m 0

)(
l l′ l′′′

m −m 0

)
= δl′′l′′′

1

2l′′ + 1
, l � l′. (6.13)

Then the formula for the energy of interaction between the two spheres is

E = −λ1aλ2b

4R

∫ ∞

0

dx

x

∑
ll′l′′

(2l + 1)(2l′ + 1)(2l′′ + 1)

×
(

l l′ l′′

0 0 0

)2

K2
l′′+1/2(x)I 2

l+1/2(xa/R)I 2
l′+1/2(xb/R). (6.14)

There is no infrared divergence because for small x the product of Bessel functions goes like
x2(l+l′−l′′)+1, and l′′ � l + l′.

As with the cylinders, we expand the modified Bessel functions of the first kind in power
series in a/R, b/R < 1. This expansion yields the infinite series

E = −λ1aλ2b

4πR

ab

R2

∞∑
n=0

1

n + 1

n∑
m=0

Dn,m

(
a

R

)2(n−m) (
b

R

)2m

, (6.15)

where by inspecting the first several Dn,m coefficients we can identify them as

Dn,m = 1

2

(
2n + 2

2m + 1

)
, (6.16)
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Figure 4. Plotted is the ratio of the exact interaction energy (6.17) of two weakly-coupled spheres
to the proximity force approximation (6.18) as a function of the sphere radius a for a = b. Shown
also by a dashed line is the power series expansion (6.15), truncated at n = 100, indicating that it
is necessary to include very high powers to capture the proximity force limit.
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Figure 5. Plotted is the ratio of the exact interaction energy (6.17) of two weakly-coupled spheres
to the proximity force approximation (6.18) as a function of the sphere radius a for b/a = 49.

and now we can immediately sum the expression (6.15) for the Casimir interaction energy to
give the closed form

E = λ1aλ2b

16πR
ln

(
1 − (

a+b
R

)2

1 − (
a−b
R

)2

)
. (6.17)

Again, when d = R − a − b 
 a, b, the proximity force theorem (B.9) is reproduced:

U(d) ∼ λ1λ2ab

16πR
ln(d/R), d 
 a, b. (6.18)

However, as figures 4, 5 demonstrate, the approach is not very smooth, even for equal-sized
spheres. The ratio of the energy to the PFA is

E

U
= 1 +

ln[(1 + µ)2/2µ]

ln d/R
, d 
 a, b, (6.19)
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Figure 6. Plotted is the ratio of the exact interaction energy (6.22) of a weakly-coupled sphere
above a Dirichlet plane to the proximity force approximation (6.23) as a function of the sphere
radius a.

for b/a = µ. Truncating the power series (6.15) at n = 100 would only begin to show the
approach to the proximity force theorem limit. The error in using the PFA between spheres
can be very substantial.

Again we will forego discussion of the strong-coupling (Dirichlet) limit here because of
the extensive discussion already in the literature [2, 12, 14].

6.3. Exact result for interaction between plane and sphere

In just the way indicated above, we can obtain a closed-form result for the interaction energy
between a weakly-coupled sphere and a Dirichlet plane. Using the simplification that

l∑
m=−l

(−1)m
(

l l l′

m −m 0

)(
l l l′

0 0 0

)
= δl′0, (6.20)

we can write the interaction energy in the form

E = − λa

2πR

∫ ∞

0
dx

∞∑
l=0

√
π

2x
(2l + 1)K1/2(x)I 2

l+1/2(x(a/R)). (6.21)

Then in terms of R/2 as the distance between the center of the sphere and the plane, the exact
interaction energy is

E = − λ

2π

(
a

R

)2 1

1 − (2a/R)2
, (6.22)

which as a → R/2 reproduces the proximity force limit, contained in the (ambiguously
defined) PFA formula

U = − λ

8π

a

d
. (6.23)

The exact energy and this PFA approximation are compared in figure 6.

7. Comments and prognosis

Although the multiple scattering methods date back to the 1970s [5, 8] some remarkable new
results have been obtained. Here we have given perhaps a simpler and more transparent
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derivation of the procedure than in [1, 2]. For example, because we have approached
the problem from a general field theoretic viewpoint, we see that the ‘translation matrix’
introduced there is nothing other than the free Green’s function. Our approach yields the
general form first, and the multipole expansion as a derived consequence, not the other way
around. We apply this multiple scattering method to obtain new results for the interaction
between semitransparent cylinders and spheres, and we have analytically demonstrated the
approach to the proximity force theorem. Most remarkably, we have derived explicit, very
simple, closed-form expressions for the interaction between weakly coupled cylinders and
between weakly coupled spheres, as well as between weakly-coupled cylinders or spheres and
Dirichlet planes. These explicit results demonstrate the profound limitation of the proximity
force approximation, which has been under serious criticism for some time [45, 46]. We
hope that these developments will lead to improved conceptual understanding, and to better
comparison with experiment, when they are extended to realistic materials.
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Appendix A. Derivation of vacuum energy formula

Following Schwinger [33] we start from the vacuum amplitude in terms of sources,

〈0+|0−〉K = eiW [K], W [K] = 1

2

∫
(dx)(dx ′)K(x)G(x, x ′)K(x ′). (A.1)

Here G is the Green’s function in the presence of some background potential. From this the
effective field is

φ(x) =
∫

(dx ′)G(x, x ′)K(x ′). (A.2)

If the geometry of the region is altered slightly, as through moving one of the bounding
surfaces, the vacuum amplitude is altered:

δW [K] = 1

2

∫
(dx)(dx ′)K(x)δG(x, x ′)K(x ′) = −1

2

∫
(dx)(dx ′)φ(x)δG−1(x, x ′)φ(x ′),

(A.3)

which uses the fact that

GG−1 = 1. (A.4)

Upon comparison of equation (A.3) with the two-particle emission term in

eiW [K] = ei
∫
(dx)K(x)φ(x)+i

∫
(dx)L = · · · +

1

2

[
i
∫

(dx)K(x)φ(x)

]2

, (A.5)
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we deduce from the coefficient of φ(x)φ(x ′) that the effective two-particle source due to a
geometry modification is

iK(x)K(x ′)|eff = −δG−1(x, x ′). (A.6)

Thus the change in the generating functional is obtained by inserting equation (A.6) into
equation (A.1),

δW = i

2

∫
(dx)(dx ′)G(x, x ′)δG−1(x ′, x) = − i

2

∫
(dx)(dx ′)δG(x, x ′)G−1(x ′, x), (A.7)

which gives the change in the action under an alteration of the Green’s function. From this, in
matrix notation

δW = − i

2
δ Tr ln G ⇒ E = i

2τ
Tr ln G, (A.8)

for a static configuration W = −Eτ , which is our starting point, equation (2.1).
There are of course many other derivations for this famous result. For example, one can

derive it rather simply on the basis of Schwinger’s quantum action principle. It may also be
worth noting that it is formally equivalent to another familiar representation for the quantum
vacuum energy

E = −i
∫ ∞

−∞

dω

2π
ω2 TrG, (A.9)

(for example, see [41]). Here, the Fourier transform of the Green’s function appears

G(x, x ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′)G(r, r′;ω). (A.10)

In terms of G, equation (A.8) can be written in the form

E = i

2

∫ ∞

−∞

dω

2π
Tr lnG. (A.11)

Because

G−1G = 1, G−1 = −ω2 − ∇2 + V, (A.12)

we see that when equation (A.11) is integrated by parts, and surface terms are ignored, we
immediately recover equation (A.9).

Appendix B. Proximity force approximation

In this appendix we derive the proximity force approximation (PFA) for the energy of
interaction between two semitransparent cylinders, or two semitransparent spheres, either
in the strong or weak coupling regimes. This approximation, relating the force between
nonplanar surfaces in terms of the forces between parallel plane surfaces, was first introduced
in 1934 by Derjaguin in [47]. This approximation is only valid when the separation between the
bodies is very small compared to their sizes. It is now well established that the approximation
cannot be extended beyond that limit, and that 1% error occurs if the PFA is applied when
the ratio of the separation to the radius of curvature of the bodies is of order 1%. Fortunately,
current experiments have not exceeded this limit. This should change in the near future, which
is one reason the new numerical calculations are of importance. In fact, we have found that in
general the errors in using the PFA may be much larger than indicated above. We concur with
Bordag that while the proximity force theorem is exact at zero separation, any approximation
based on extrapolation away from that point is subject to uncontrollable errors.
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Figure B1. Geometry of two cylinders (or two spheres) with radii a and b, respectively, and
distances between their centers of R > a + b. The proximity force approximation applies when
the distance of closest approach d = R − a − b 
 a, b. The approximation consists in assuming
that the interaction is dominated by the interaction of adjacent surface elements, as shown.

Consider first two parallel cylinders, of radius a and b, with their centers separated by a
distance R > a + b. The distance of closest approach of the cylinders is d = R − a − b. The
PFA consists of assuming that the energy between the two bodies is the sum of the energies
between small parallel plane elements at the same height along the surfaces, that is, in polar
coordinates at θ relative to the center of cylinder A and at θ ′ relative to the center of cylinder
B, where as seen in figure B1,

a sin θ = b sin θ ′. (B.1)

Because d is much smaller than either a or b, only small values of θ actually contribute, and
the energy of interaction U(d) between the surface may be expressed in terms of the energy
per unit area E(h) for the corresponding parallel plate problem, with separation distance h:

U(d) =
∫

a dθ E[d + a(1 − cos θ) + b(1 − cos θ ′)]. (B.2)

Here, for weak coupling (see equation (3.7)),

E(h) = − λ1λ2

32π2h
. (B.3)

Because θ is small, the PFA energy per unit length is

U(d) = − λ1λ2

32π2

a

d

∫ π

−π

dθ

[
1 +

a

d

(
1 +

a

b

)
θ2

2

]−1

= −λ1λ2

32π

√
2ab

R

1

d1/2
. (B.4)

To obtain the corresponding result for strong coupling, we merely replace E(h) =
−π2/(1440h3), and a similar calculation yields

U(d) = − π3

3840

√
2ab

R

1

d5/2
, d 
 a, b. (B.5)

It is easy to reproduce the result given by Bordag in [16] for a cylinder in front of a plane.
For the strong coupling (Dirichlet) case we simply take result (B.5) and regard b as much
larger than a, and obtain

U(d) = − π3

1920
√

2

a1/2

d5/2
, d 
 a. (B.6)
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For a weakly coupled cylinder in front of a Dirichlet plane, we start from the corresponding
interaction between two such planes, E(h) = −λ/(32π2h2), which leads to

U(d) = − λ

64π

(2a)1/2

d3/2
. (B.7)

For nearly touching spheres the calculation goes just the same way. The result, for strong
coupling (Dirichlet boundary conditions), for the PFA energy is

U(d) = − π3

1440

ab

R

1

d2
, d 
 a, b, (B.8)

while in the weak-coupling limit there is sensitivity for large θ signifying a logarithmic
divergence,

U(d) ∼ λ1λ2ab

16πR
ln(d/R), d 
 a, b. (B.9)

For a weakly-coupled sphere in front of a Dirichlet plane, a PFA approximation is

U(d) = − λ

16π

a

d
. (B.10)

Appendix C. Short distance limit

C.1. Cylinders

In this section of the appendix we want to discuss the short distance limit, for the case of weakly-
coupled cylinders, where the closest distance between the cylinders is R − a − b = d 
 a, b,
which should reduce to the proximity force approximation derived in appendix B. We will
calculate the first correction to the PFA, and compare to the exact result found in section 5.4. In
this limit, we replace the modified Bessel functions by their uniform asymptotic approximants,
which in leading form yield

K2
m+m′(x)I 2

m(xa/R)I 2
m′(xb/R) ∼ 1

8π

1

mm′(m + m′)
t tatb e−χ , (C.1)

where

t = (1 + z2)−1/2, ta = (
1 + z2

a

)−1/2
, tb = (

1 + z2
b

)−1/2
, (C.2)

and

z = x

m + m′ , za = xa/R

m
, zb = xb/R

m′ . (C.3)

The exponent here is

χ = 2(m + m′)η(z) − 2mη(za) − 2m′η(zb), (C.4)

where η is defined by equation (5.43). The reason that the force diverges as a + b → R is
that χ vanishes here, for suitable values of m and m′. To make it systematic, let us rescale
variables,

m = Mα, m′ = Mβ, (C.5)

and then when b = R − a, χ = 0 when βa = αb.
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When b = R − a − d, with d small compared to the radius of either cylinder, we assume
that the main contribution comes from the neighborhood of these values. So we define

α = a

R
+ α̂, β = 1 − a

R
+ β̂, (C.6)

and we expand the exponent to first order in d and to second order in α̂ and β̂ = −α̂. (The
latter constraint ensures that α + β = 1.) The result is

χ = 2Md

tR
+

MtR2α̂2

a(R − a)
+ O(α̂3, d2). (C.7)

Then

E ∼ − λ1λ2

16π2

∫ ∞

0
dz zt3

∫ ∞

0
dM e−2Md/tR

∫ ∞

−∞
dα̂ e−Mtα̂2R2/[a(R−a)]

= −λ1λ2

32π

√
2

d

√
a(R − a)

R
= U, (C.8)

which is exactly the result given by the proximity force theorem in appendix B, equation (B.4).
Now we calculate the correction to the PFA. We do this by keeping subleading terms in

the uniform asymptotic approximation for the product of six Bessel function

K2
m+m′(x)I 2

m(xa/R)I 2
m′(xb/R) ∼ 1

8πmm′
t tatb

m + m′

×
(

1 − u1(t)

m + m′

)2 (
1 +

u1(ta)

m

)2 (
1 +

u1(tb)

m′

)2

e−χ , (C.9)

where t = t (z) with z = x/(m + m′), za = xa/m, zb = xb/m′,

u1(t) = 3t − 5t3

24
, (C.10)

and χ is given by equation (C.4). Now when we expand χ we must go out to the order α̂4, d2,
and α̂2d. The result is

e−χ ∼ e−2Md/tRe−Mα̂2tR2/(a(R−a))

[
1 − d2Mt

R(R − a)
+

2α̂dMt

R − a

− α̂2dMt(1 − t2)R

(R − a)2
+

α̂3Mt3(R − 2a)R3

3a2(R − a)2
+

α̂4Mt3(1 − 3t2)(R2 − 3aR + 3a2)R4

12a3(R − a)3

+
2M2α̂2d2t2

(R − a)2
+

M2α̂6t6(R − 2a)2R6

18a4(R − a)4
+

2

3

M2α̂4t4dR3

a2(R − a)3
(R − 2a)

]
. (C.11)

As above, we replace

m = M
a

R

(
1 + α̂

R

a

)
, m′ = M

(
1 − a

R

) (
1 − α̂

R

R − a

)
. (C.12)

We expand ta and tb in the prefactor using

dt

dz
= −zt3,

d2t

dz2
= 2t3 − 3t5. (C.13)

The PFA is obtained by using the integrals∫ ∞

−∞
dα̂ e−α̂2γ =

√
π

γ
, γ = MtR2/a(R − a), (C.14a)
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0

dM√
M

e−2Md/t = �

(
1

2

)(
2d

t

)−1/2

, (C.14b)

and so, from the expansion we can obtain the result of the integrals over α̂ and M by the
algebraic substitutions

1

M
→ −4d

Rt
, M → tR

4d
, (C.15a)

α̂2 → −2a(R − a)d

R3t2
, Mα̂2 → 1

2

a(R − a)

R2t
, Mα̂4 → −3a2(R − a)2d

R5t3
, (C.15b)

M2α̂2 → a(R − a)

8Rd
, M2α̂4 → 3

4

a2(r − a)2

R4t2
, M2α̂6 → −15

2

a3(R − a)3d

R7t4
.

(C.15c)

The result is the following correction factor to the PFA in the form given in equation (C.8):

E

U
= 1 − R2 + aR + a2

4a(R − a)

d

R
. (C.16)

Although this looks slightly different from equation (5.37), it agrees with the latter when the
PFA formula (5.36) is expressed in terms of the form given in equation (C.8), that is, writing
d = R − a − b.

C.2. Spheres

Here we see how the proximity force limit is achieved for weakly-coupled spheres. Again,
the strategy is to replace the modified Bessel functions by their leading uniform asymptotic
approximants. The only new element is the appearance of the 3-j symbol. Because now only
m = 0 appears, there is a very simple approximant for the latter [48–50]:(

l l′ l′′

0 0 0

)
∼

√
π

2

cos π
2 (l + l′ + l′′)

[(l + l′ + l′′)(l + l′ − l′′)(l − l′ + l′′)(−l + l′ + l′′)]1/4
. (C.17)

For more on the asymptotics of Clebsch–Gordon coefficients see [24]. This result is quite
accurate, being within 1% of the true value of the Wigner coefficient for l’s of order 100
(except very near the boundaries of the triangular region, where the approximant diverges
weakly). Otherwise, the procedure is rather routine. Letting ν = l + 1/2, and similarly for the
primed quantities, we expand the exponent resulting from the uniform asymptotic expansion
about the critical point, with

ν = N
( a

R
+ α̂

)
, ν ′ = N

(
1 − a

R
+ α̂′

)
, ν ′′ = N(1 + α′′), (C.18)

with the constraint α̂ + α̂′ + α̂′′ = 0. Replacing the sums over angular momenta by integrals,
and changing variables:∫

dv dν ′ dν ′′ = 2
∫ ∞

0
dN N2

∫ ∞

0
d(α̂ + α̂′)

∫ ∞

−∞

d(α̂ − α̂′)
2

, (C.19)

which reflects the restriction emerging from the triangular relation of the Wigner coefficients,
α̂ + α̂′ > 0, we find for the approximant to the energy when the two spheres are nearly
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touching:

E ∼ −λ1aλ2b

4R

2

π

∫ ∞

0

dx

x

∫ ∞

0
dN N2t3 e−2Nd/Rt 1

4πN2

×
[

R2

a(1 − a)

]1/2 ∫ ∞

0

d(α̂ + α̂′)
(α̂ + α̂′)1/2

e−4N(α̂+α̂′)/t

×
∫ ∞

−∞
d

(
α̂ − α̂′

2

)
e−NtR2(α̂−α̂′)2/4a(R−a)

∼ λ1λ2ab

16πR
ln d, d = R − a − b 
 a, b, (C.20)

which is exactly the PFA result (B.9).
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